SOLUTIONS OF THE EQUATIONS OF A LAMINAR
BOUNDARY LAYER FOR SMALL TEMPERATURE
FACTORS AND HIGH MACH NUMBERS

E. I. Polyak UDC £36.242:532.526.2

The equations for a gradient-free laminar boundary layer have been integrated numerically on a
computer for small temperature factors Ty and high Mach numbers M.. It is shown that a calcu-
lation of the heat-transfer and friction coefficients by the "controlling-temperature method" leads
to a good agreement with the coefficients found from the exact solutions of the equation of the
boundary layer with and without injection,

In the many papers which have been published on the boundary layer, a variety of assumptions have been
used regarding the way to take into account the influence of the temperature factor Ty on the heat transfer and
the friction. In{1, 2] and in certain other papers, the influence of TF on the heat transfer of a laminar boundary
layer is taken into account by introducing a "controlling" (reduced) temperature in the dimensionless equation
for the incompressible fluid. The influence of the temperature factor (for a laminar boundary layer) is studied
analytically in [1] for Le and Pr = 1 with Ty/Tg > 1 or 0.2 M2 For the case % = 1.4 it was found there that T*
should be calculated from

Ty

T* =T, (0.5 £ 0.033M2 1 0.5

The equation for the "controlling" temperature T* was not studied analytically in [2]. It was recommended
there that T* be calculated from :

T* = (Ty— T.) 0.5+ T, +0.22(T, —T,). @)

For practical purposes we are interested in the influence of the temperature factor T on the solutions of the
boundary-layer equation for Tp <« 1 andforlarge numbers M. Hereweconsider the case Pr = Le= 1, dp/dx=0,
and T, =T

w e

The initial equations are as follows:

the flow rate equation,

loul, + [pol, = 0; 3)
the momentum equation,
pui,, + pou, = [jiyly = Ty} 4)
the equation of state,
o= Lo (5)
the equation for the dynamic viscosity,
o= £T05, (6)
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and the energy equation,

puTOx + vaoy = [p‘TOy]y‘ (7)
Here T is the stagnation temperature,
u2
To=T .
=T+ 57 )

System (3)-(8) is solved under the following boundary conditions:

y=0; u=0; U= Uy, T=TW=T°"’; (9)

Yy — co; U Uy T—>T, tye—0.

If Ty, is not a function of x, then the solution of Eq. (7) is the Crocco integral [1]

7,= Le—Tw 1 (10)
ue
where
T, 11
e = E+2ngA. (11
We find the temperature from Eq. (10):
Toe—T u
PToml0e " w Ty — . 12
- u, “t 2ngA 12)
We restrict the present analysis to the case Ty, = Tg: then using (11) we find from (12)
uu, — u®
T= — 4T, 13
v (13)

Through a substitution of variables, we can transform the partial differential equations in (3), (4), and (7) into
ordinary differential equations. We seek solutions u and v in the form

w=t,f (T/%— Vﬁé;) ; v= V;;eu P ( 152— VRe, ) : (14)

After some substitutions and manipulations involving Eqs. (13) and (14), the flow-rate equation (3) be-
comes

1 - t 1 - . - t [
—3pfff0—§pei +pr 9" + 9’0 =0, (15)
and the momentum equation (4) becomes

- 1 -
pof — —2—.ff’ po =2, (16)

where z = uf",

System (15), (16) is a closed system of equations. We note that substitution (14) is quite convenient for
a solution of this system of equations on a computer. For system (15), (16) we find the following boundary
conditions, instead of those in (9):

8—>o00; fo—>1;  f,—0. (18)

System (15), (16) is integrated by the very simple Euler —Cauchy method. The integration step is chosen
such that a further reduction of the step does not affect the results of the solution. The relationship between
the boundary conditions at the wall and at the outer boundary of the boundary layer is found by the method of
trial and error; specifically, the derivative fi, (at the wall) is specified in the computer program in a manner
such that boundary conditions (18) are satisfied. We use this program to calculate the velocity profile, the
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Fig. 1. Properties of the boundary layer as
functions of Ty, (B = 0): 1) 6%/0,0¢ (T* is cal-
culated by the Dorrance method); 2) a¥agct
(T* is calculated by the Dorrance method); 3}
a¥og ot (T* is calculated by the Eckert—Drake
method); 4) 6e/8g¢t; 5) log A/ dBy.
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Fig. 2. Effect of injection on the heat-iransfer coefficient
upon a change in TW. a) T* (calculated by the Eckert—Drake
method); b) T* (calculated by the Dorrance method). 1) Ty =
1.0; 2) Ty, = 0.001. The values of ¢ for 1.0 > Ty, > 0.001 lie
between the curves of ¢ for Ty, = 1.0 and T, = 0,001.

heat-transfer coefficient, and the boundary-layer thickness over a broad range Tw = 0.001~5. At small values
TW, the heat transfer and the friction can, of course, be substantially affected by the changes in the gas proper-
ties due to the high temperatures, chemical reactions, radiative heat transfer, etc. However, these effects
are of no importance to the problem of the present paper.

Let us convert the equations for the controlling temperature, (1) and (2), to a form convenient for analysis
in the case Ty = Te, Pr = 1. We express M, in (1) in terms of ug and the sound velocity. From (1) we find

. 0.165u2
=Tt gy (19)
from (2) we find
T* =T, -- m .

L. Analysis of the Characteristics of a Thermal Boundary Layer in the Absence of Injection. We return
to boundary conditions (17). In the case of no injection we have ¢ = 0. Figure 1 shows the change in the ratio
of the heat-transfer coefficients calculated by the controlling-temperature method to the heat-transfer coeffi-
cient calculated by the program of the present work (we note that the ratio of heat-transfer coefficients is equal
to the ratio of friction coefficients). We see from Fig. 1 that if T* is calculated from Eq. (20), we find 1 > o*/
Oget > 0.94; if we instead calculate T* from Eq. (19), we find O‘%"act = 1:1.013 over the entire range of TW. Ac-
cordingly, there is a solid basis for assuming that the controlling-temperature method involving the use of
Eq. (19) to calculate T* can be recommended for calculations of heat transfer and friction at small values of
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Fig. 3. a) Maximum quality and angle of attack aextr
of the plate as functions of Cf; b) aerodynamic quality
of the plate as a function of the angle of attack; c)
plate in hypersonic flow. 1) Friction force Xpr = Cf
(piu%/z)F; 2) pressure force P = (piui/Z)F;3) Ct=
0.0001; 4) C¢ = 0.001; 5) Kmaxs 6) logKmaxs 7)
logTextr; 8) Cextr-

Tw for laminar flow with Pr = Le = 1, dp/dx = 0, and Ty, = Te. We know that for an incompressible laminar
boundary layer the thickness of the dynamic boundary layer is calculated from

in = Re0.s

4,5L ' @1

For a compressible velocity boundary layer there are no definite recommendations for calculating the
thickness of a boundary layer for a small temperature factor. Let us determine which of the following equa-
tions should be used to calculate the thickness of a compressible boundary layer:

4.5L
6 = W ) (22)
or
4.5L
6, = Re ° (23)

€

Figure 1 also shows the calculated values of the ratios §o/04ct and 6% 65¢t, Where 050t is the actual
thickness of the boundary layer. In the determination of 840t at the boundary of the boundary layer we as-
sumed u = 0.99u,. The data in Fig. 1 show that 6%/, lies in the range 0.92-1.15 over the entire range of
Ty,; i.e., within an error of 13% the thickness of the boundary layer can be calculated from Eq. (22). We see

from Fig. 1 that the boundary-layer thickness calculated from Eq. (23) is completely unacceptable.

II. Analysis of the Influence of Injection on Heat Transfer and Friction over Broad Ranges of Ew and M,
Let us examine boundary conditions (17). In the case of injection we have gy, = const = 0. The calculated re-
sults are treated in the form of curves of ¥ = f(B), where

ot St

B0 TwB=0 StA—o
We note that for an incompressible boundary layer the results of the calculation of the heat transfer dur-
ing injection are treated in the form of the following function [1]:

a St
St

pwvw
=f(By Y Bu=—"a (25)

Ap=0 eB=0 peueSte

We see that Eq. (24) differs from (25) in that the parameters p* and St"éz 0 in (24) are calculated at the
controlling temperature, Figure 2 shows the calculated results with injection taken into account. These re-
sults show that when T* is calculated from Eq. (19) the results of the exact calculation for B <1.4 essentially con-
form to a common universal curve, whose slope at small values of (B <0.3) is the same as the slope of the curve
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obtained for an incompressible laminar boundary layer (tang = 2/3) [1]. If the injection parameter is cal-
culated at T* as calculated from (20), we do not find a single universal curve (curve 2 in Fig. 2a),

Engineering Application, Examination of the data in Fig., 2 and of the theoretical equations above leads
to the following conclusions.

1. Injection is effective at large Mach numbers M and at low temperature factors Ty-

2. Infense injection substantially reduces both heat transfer and friction, and these effects may turn out
to be useful in the design of certain hypersonic aircraft. Let us illustrate this latter assertion. We consider
a plate oriented at some angle of attack in a hypersonic flow (Fig. 3¢). The aerodynamic quality K of this
plate can be written as

pcosa—C;sina

~ psine~C,cosa |
where Cg is the coefficient of friction averaged over the plate, divided by the incoming velocity head p1u2/2
We assume that the pressure coefficient p obeys the Newton law p = 2 sin’a:

. 2—'_ -—_ ) . -
2sin acosa C; sina. 26)
2sin®a 4+ C;cosa

K=

The results of a calculation carried out to determine the behavior of K as a function of @ for a constant
coefficient Cy; are shown in Fig. 3b. The data of this figure show that the curve K = K() has a maximum Kmax-

Figure 3a shows curves of K, .., aextr as functions of Cy. We see that the aerodynamic quality Ky qax
can be substantially increased by reducing C¢. Intense injection reduces Cy, and the plate becomes "slippery. "
Accordingly, in certain cases, intense injection may turn out to be useful for hypersonic aircraft.

NOTATION
u is the horizontal velocity component;
v is the vertical velocity component;
T isthe frictional stress:
X,y are the coordinates;
o is the density;
p is the pressure;
Mg is the Mach number at the outer boundary of the boundary layer;
7] is the dynamic viscosity;
g is the acceleration due to gravity;
R is the universal gas constant;
cp is the specific heat at p = const;
A is the coefficient for the conversion of heat into mechanical work;
n= cp/cV is the ratio of specific heats;
T is the temperature;
T is the stagnation temperature;
k is the coefficient in the equation for the dynamic viscosity;
Pr is the Prandtl number;
Le is the Lewis number;
Re is the Reynolds number;
St is the Stanton number;
L is the scale dimension;

Ty = ue/2gcpA Rey = peugl/

gRT,, kT ; Re* = p*u L/u*; Reg =

Bele L/pte, TF T /TO is the temperature factor;
Ty = T/ Tys 7 = 1/(f—f2+Tw),

dp/df = of = (2f—1)/(E—1* + T )%

p= -2+ T )% x=x/Lyy =

y/L; 0 = (y/\/?i)\/ Rey is the self-similar variable;
= df/df; ¢' = dp/d; T, is the reduction temperature;
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pu)/ox =.[puly; 8(ov)/ 8y = [pvly;
8u/0x = uy; p = (p—p;)/(pjui/2)

Indices
w is the properties at walls:
e is the properties at outer:boundary of boundary layer;
act is the properties obtained through the solution of the boundary-layer equation;
* is the properties calculated on the basis of the controlling temperature;
i is the properties of incoming flow;
in is the incompressible fluid.
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QUASISTEADY APPROACH IN CALCULATIONS FOR
CONVECTIVE HEAT TRANSFER

E. E. Prokhach UDC 536.242

An equation is derived for determining the limits of applicability of the quasisteady approach in
thermal calculations involving the cooling of metal plates in liquids and gases.

Under certain conditions of convective heat transfer, a boundary layer rapidly reacts to external per-
turbations and manages to change when there are changes in either the temperature of the object in the flow,
the pressure at the inlet to the channel, or other parameters. In this case, "instantaneous steady states" exist
at each time, and the steady-state approach can be used to determine the rate of the process. We call pro-
cesses occurring under such conditions "quasisteady. "

Whether a particular type of heat transfer can be treated as quasisteady is of both theoretical and prac-
tical interest. The use of equations found for the steady-state conditions substantially simplifies the calcula-
tions. There has been less study of unsteady heat-transfer processes, and dimensionless equations for the
heat-transfer coefficients are not available for most unsteady processes.

The usual approach is to treat a heat-transfer process as quasisteady if the ratio of the Nusselt numbers
found experimentally and calculated on the basis of the equations corresponding to the steady-state regimes is
approximately unity [1-3]. In certain cases, the "condition for a quasisteady system"is assumed to be the
approximate equality of the steady and unsteady heat fluxes [4, 5].

Attempts have been made to find the conditions under which the equations found for the steady-state
conditions can be applied to unsteady heat-transfer processes. Comparing the heat fluxes calculated for the
steady and unsteady regimes during the heating and cooling of a vertical plate, Sparrow and Gregg [4] found
that the process can be treated as quasisteady under the condition

AT T '
xT [—g—(m] < 0.033,
where

d(AT)

AT =T —Tu; AT =
dz
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